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ON FUNCTION SPACES ON SYMMETRIC SPACES
BERNHARD KROTZ AND HENRIK SCHLICHTKRULL

ABSTRACT. Let Y = G/H be a semisimple symmetric space. It is
shown that the smooth vectors for the regular representation of G
on LP(Y') vanish at infinity.
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1. Vanishing at infinity

Let G be a connected unimodular Lie group, equipped with a Haar
measure dg, and let 1 < p < oo. We consider the left regular represen-
tation L of G on the function space E, = LP(G).

Recall that f € E), is called a smooth vector for L if and only if the
map

G— E, g— L(g)f
is a smooth E,-valued map.

Write g for the Lie algebra of G and U(g) for its enveloping algebra.
The following result is well-known, see [3].

Theorem 1.1. The space of smooth vectors for L is
EX ={feC™G)| L.f € LP(G) for allu € U(g)}.

Furthermore, E>° C Cg°(G), the space of smooth functions on G which
vanish at infinity.

Our concern is with the corresponding result for a homogeneous
space Y of G. By that we mean a connected manifold Y with a tran-
sitive action of GG. In other words

Y =G/H

with H C G a closed subgroup. We shall request that Y carries a
G-invariant positive measure dy. Such a measure is unique up to scale
and commonly referred to as Haar measure. With respect to dy we
form the Banach spaces E, := LP(Y'). The group G acts continuously
by isometries on E, via the left regular representation:

[L(9)fl(y)=flg7'y) (9eGyeY,feE,).

We are concerned with the space £ of smooth vectors for this repre-
sentation. The first part of Theorem [I.1] is generalized as follows, see
[3], Thm. 5.1.

Theorem 1.2. The space of smooth vectors for L is
EX={feC®Y)|L.f € LP(Y) for allu € U(g)}.

We write C3°(Y) for the space of smooth functions vanishing at
infinity. Our goal is to investigate an assumption under which the
second part of Theorem [LT] generalizes, that is,

(1.1) By C Cgo(Y).

Notice that if H is compact, then we can regard LP(G/H) as a
closed G-invariant subspace of LP(G), and (L) follows immediately
from Theorem [
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Likewise, if Y = (G regarded as a homogeneous space for G x G with
the left xright action, then again (II]) follows from Theorem [IT], since
a left xright smooth vector is obviously also left smooth.

However, (LT) is false in general as the following class of examples
shows. Assume that Y has finite volume but is not compact, e.g.
Y = SI(2,R)/SI(2,Z). Then the constant function 1y is a smooth
vector for EP. but it does not vanish at infinity.

2. Proof by convolution

We give a short proof of (IL1]) for the case Y = G, based on the
theorem of Dixmier and Malliavin (see [2]). According to this theorem,
every smooth vector in a Fréchet representation (7, F') belongs to the
Garding space, that is, it is spanned by vectors of the form 7(f)v,
where f € C®(G) and v € E. Let such a vector L(f)g, where g €
E, = L?(QG), be given. Then by unimodularity

1) (L) = /G f(@)glay) d = /G f(ya)g(a) d.

For simplicity we assume p = 1. The general case is similar. Let Q C G
be compact such that |g| integrates to < € over the complement. Then,
for y outside of the compact set suppf - 2, we have

yr~' € suppf = x ¢ Q,

and hence

IL(/)g(y)| < sup / ol e < sl e

It follows that L(f)g € Co(G).
Notice that the assumption Y = G is crucial in this proof, since the
convolution identity (2.1) makes no sense in the general case.

3. Semisimple symmetric spaces

Let Y = G/H be a semisimple symmetric space. By this we mean:

e (5 is a connected semisimple Lie group with finite center.
e There exists an involutive automorphism 7 of GG such that H
is an open subgroup of the group G™ = {g € G | 7(g) = g} of
T-fixed points.
We will verify (ILT) for this case. In fact, our proof is valid also under
the more general assumption that G/ H is a reductive symmetric space
of Harish-Chandra’s class, see [1].
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Theorem 3.1. Let Y = G/H be a semisimple symmetric space, and
let E, = LP(Y') where 1 < p < co. Then

EX CCR(Y).

Proof. A little bit of standard terminology is useful. As customary
we use the same symbol for an automorphism of G and its derived
automorphism of the Lie algebra g. Let us write g = h + q for the
decomposition in 7-eigenspaces according to eigenvalues +1 and —1.

Denote by K a maximal compact subgroup of G. We will and may
assume that K is stable under 7. Write 6 for the Cartan-involution
on GG with fixed point group K and write g = £ + p for the eigenspace
decomposition of #. We fix a maximal abelian subspace a C p N q.

The simultaneous eigenspace decomposition of g under ad a leads to
a (possibly reduced) root system ¥ C a*\{0}. Write a,,, for a with the
root hyperplanes removed, i.e.:

teg = {X €a| (Va € X) a(X) #0}.

Let M = ZH["'K(a> and WH = NHQK(G)/M.
Recall the polar decomposition of Y. With yg = H € Y the base
point of YV it asserts that the mapping

p: K/Mxa—=Y, (kM,X)— kexp(X)-yo

is differentiable, onto and proper. Furthermore, the element X in the
decomposition is unique up to conjugation by Wy, and the induced
map

K/M Xy, O = Y
is a diffeomorphism onto an open and dense subset of Y.

Let us return now to our subject proper, the vanishing at infinity of
functions in E3°. Let us denote functions on Y by lower case roman
letters, and by the corresponding upper case letters their pull backs to
K/M x a, for example F' = f o p. Then f vanishes at infinity on Y
translates into
(3.1) lim sup |F(kM, X)|=0.

X —o0
Xea FEK

We recall the formula for the pull back by p of the invariant measure
dy on Y. For each a € Y we denote by g* C g the corresponding
root space. We note that g“ is stable under the involution 7. Define
Do, T€SP. (o, as the dimension of the f#7-eigenspace in g* according to
eigenvalues +1, —1. Define a function J on a by

J(X) = | I lcosh a(X)]% - [sinh a(X)P=

acext
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With d(kM) the Haar-measure on K/M and dX the Lebesgue-
measure on a one then gets, up to normalization:
o (dy) = J(X) d(k, X) := J(X) d(kM)dX .

We shall use this formula to relate certain Sobolev norms on Y and
on K/M x a. Fix a basis Xi,..., X, for g. For an n-tupel m =
(my,...,my) € Nj we define elements X™ € U(g) by

X™ = XX

These elements form a basis for U(g). We introduce the LP-Sobolev

norms on Y,
1/p
Sm@ |:/ |L Xm |pdy:|

lm|<m

where Q@ C Y, and where [m| :=m; + ...+ m,. Then f € £ if and
only if Sy, v (f) < oo for all m.
Likewise, for V' C a we denote

1/p
Sry(F) =) |L(Z™)F(kM, X)[P J(X) d(k, X)
Im|< |i/];><V }

Here Z refers to members of some fixed bases for € and a, acting from
the left on the two variables, and again m is a multiindex.
Observe that for Z € a we have for the action on a,

[L(Z)F)(kM, X) = [L(Z*) f](k exp(X) - yo)

where Z* := Ad(k)(Z) can be written as a linear combination of the
basis elements in g, with coefficients which are continuous on K. It
follows that there exists a constant C,, > 0 such that for all F' = fop,

(3.2) v (F) < CrSmal(f)

where Q = p(K/M,V) = K exp(V) - yp.
Let € > 0 and set

a.:={X €a| (Vael) |a(X)|>e€}.
Observe that there exists a constant C. > 0 such that
(3.3) (VX €a) J(X)>C..

We come to the main part of the proof. Let f € E;°. We shall first
establish that

(3.4) lim F(eM,X)=0.

X€ae
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It follows from the Sobolev lemma, applied in local coordinates, that
the following holds for a sufficiently large integer m (depending only
on p and the dimensions of K/M and a). For each compact symmetric
neighborhood V' of 0 in a there exists a constant C' > 0 such that

|F(eM,0)|

(3.5) <0y { /K o IEZERML P dlh X)

|m|<m

for all F' € C*(K/M x a). We choose V such that a. +V C a.

Let § > 0. Since f € EP, it follows from (B.2]) and the properness
of p that there exists a compact set B C a with complement B¢ C a,
such that

(36) :;LBC (F) < CmSm,Q(f) <9

where Q = K exp(B°) - yo.
Let X; € acnN(B+ V)% Then X1+ X € a;pNB° for X € V.
Applying (B.3]) to the function

Fi(kM, X) = F(kM, X, + X),

1/p

and employing (3.3) for the set a./, we derive
|[F(eM, X1)]

<c 3 | [ Empe P )| "

|m|<m

1/p
<o S [[ e p 00 ale )|

lm|<m

= OS5 pe(F) < C'5,

from which (B.4]) follows.
In order to conclude the theorem, we need a version of (3.4]) which
is uniform for all functions L(q)f, for ¢ € Q@ C G a compact subset.
Let 6 > 0 be given, and as before let B C a be such that (3.6]) holds.
By the properness of p, there exists a compact set B’ C a such that

QK exp(B) - yo C K exp(B') - yo.

We may assume that B’ is Wy-invariant. Then, for each k € K,
X ¢ B and ¢ € @ we have that

(3.7) q¢ kexp(X) -y & Kexp(B) - yo,
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since otherwise we would have
kexp(X) - yo € ¢ exp(B) - yo C K exp(B') - yo

and hence X € B’.
We proceed as before, with B replaced by B’, and with f, F' replaced
by f, = L,f, F, = f; o p. We thus obtain for X; € a.N (B’ 4+ V)¢,

| Fy(eM, Xq)| < CS;,(B’)C(Fq) < CCnSma (fy)

where Q' = K exp((B')) - yo-

Observe that for each X in g the derivative L(X)f, can be written
as a linear combination of derivatives of f by basis elements from g,
with coefficients which are uniformly bounded on (). We conclude that
Sm.qa(fy) is bounded by a constant times Sy, g-10/(f), with a uniform
constant for ¢ € . By ([B7) and (B.6) we conclude that the latter
Sobolev norm is bounded from the above by 9.

We derive the desired uniformity of the limit (3.4)) for ¢ € @,

(3.8) lim sup [Fy(eM, X)|=0.

X€ae q

Finally we choose an appropriate set (). Let € > 0 be arbitrary.
There exists Xi,..., Xy € a such that

N

(3.9) a=JX;+a).

j=1

Set a; = exp(X;) € A and define a compact subset of G by

N
Q = UK(I,]
j=1

Then, for every X € a we have X — X, € a, for some j. Hence with
q = kexp(X;)

lim F(kM,X) = lim F,(eM,X - X;) =0,

X—o00

as was to be shown. O

Remark. Let f € L*(Y) be a K-finite function which is also finite for
the center of U(g). Then it follows from [4] that f vanishes at infinity.
The present result is more general, since such a function necessarily
belongs to E5°.
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