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ON FUNCTION SPACES ON SYMMETRIC SPACES

BERNHARD KRÖTZ AND HENRIK SCHLICHTKRULL

Abstract. Let Y = G/H be a semisimple symmetric space. It is
shown that the smooth vectors for the regular representation of G
on Lp(Y ) vanish at infinity.
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1. Vanishing at infinity

Let G be a connected unimodular Lie group, equipped with a Haar
measure dg, and let 1 ≤ p < ∞. We consider the left regular represen-
tation L of G on the function space Ep = Lp(G).

Recall that f ∈ Ep is called a smooth vector for L if and only if the
map

G → Ep, g 7→ L(g)f

is a smooth Ep-valued map.
Write g for the Lie algebra of G and U(g) for its enveloping algebra.

The following result is well-known, see [3].

Theorem 1.1. The space of smooth vectors for L is

E∞
p = {f ∈ C∞(G) | Luf ∈ Lp(G) for all u ∈ U(g)}.

Furthermore, E∞
p ⊂ C∞

0 (G), the space of smooth functions on G which

vanish at infinity.

Our concern is with the corresponding result for a homogeneous
space Y of G. By that we mean a connected manifold Y with a tran-
sitive action of G. In other words

Y = G/H

with H ⊂ G a closed subgroup. We shall request that Y carries a
G-invariant positive measure dy. Such a measure is unique up to scale
and commonly referred to as Haar measure. With respect to dy we
form the Banach spaces Ep := Lp(Y ). The group G acts continuously
by isometries on Ep via the left regular representation:

[L(g)f ](y) = f(g−1y) (g ∈ G, y ∈ Y, f ∈ Ep) .

We are concerned with the space E∞
p of smooth vectors for this repre-

sentation. The first part of Theorem 1.1 is generalized as follows, see
[3], Thm. 5.1.

Theorem 1.2. The space of smooth vectors for L is

E∞
p = {f ∈ C∞(Y ) | Luf ∈ Lp(Y ) for all u ∈ U(g)}.

We write C∞
0 (Y ) for the space of smooth functions vanishing at

infinity. Our goal is to investigate an assumption under which the
second part of Theorem 1.1 generalizes, that is,

(1.1) E∞
p ⊂ C∞

0 (Y ).

Notice that if H is compact, then we can regard Lp(G/H) as a
closed G-invariant subspace of Lp(G), and (1.1) follows immediately
from Theorem 1.1.
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Likewise, if Y = G regarded as a homogeneous space for G×G with
the left×right action, then again (1.1) follows from Theorem 1.1, since
a left×right smooth vector is obviously also left smooth.

However, (1.1) is false in general as the following class of examples
shows. Assume that Y has finite volume but is not compact, e.g.
Y = Sl(2, R)/Sl(2, Z). Then the constant function 1Y is a smooth
vector for Ep, but it does not vanish at infinity.

2. Proof by convolution

We give a short proof of (1.1) for the case Y = G, based on the
theorem of Dixmier and Malliavin (see [2]). According to this theorem,
every smooth vector in a Fréchet representation (π, E) belongs to the
G̊arding space, that is, it is spanned by vectors of the form π(f)v,
where f ∈ C∞

c (G) and v ∈ E. Let such a vector L(f)g, where g ∈
Ep = Lp(G), be given. Then by unimodularity

(2.1) [L(f)g](y) =

∫

G

f(x)g(x−1y) dx =

∫

G

f(yx−1)g(x) dx.

For simplicity we assume p = 1. The general case is similar. Let Ω ⊂ G
be compact such that |g| integrates to < ǫ over the complement. Then,
for y outside of the compact set suppf · Ω, we have

yx−1 ∈ suppf ⇒ x /∈ Ω,

and hence

|L(f)g(y)| ≤ sup |f |

∫

x/∈Ω

|g(x)| dx ≤ sup |f | ǫ.

It follows that L(f)g ∈ C0(G).
Notice that the assumption Y = G is crucial in this proof, since the

convolution identity (2.1) makes no sense in the general case.

3. Semisimple symmetric spaces

Let Y = G/H be a semisimple symmetric space. By this we mean:

• G is a connected semisimple Lie group with finite center.
• There exists an involutive automorphism τ of G such that H

is an open subgroup of the group Gτ = {g ∈ G | τ(g) = g} of
τ -fixed points.

We will verify (1.1) for this case. In fact, our proof is valid also under
the more general assumption that G/H is a reductive symmetric space
of Harish-Chandra’s class, see [1].
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Theorem 3.1. Let Y = G/H be a semisimple symmetric space, and

let Ep = Lp(Y ) where 1 ≤ p < ∞. Then

E∞
p ⊂ C∞

0 (Y ) .

Proof. A little bit of standard terminology is useful. As customary
we use the same symbol for an automorphism of G and its derived
automorphism of the Lie algebra g. Let us write g = h + q for the
decomposition in τ -eigenspaces according to eigenvalues +1 and −1.

Denote by K a maximal compact subgroup of G. We will and may
assume that K is stable under τ . Write θ for the Cartan-involution
on G with fixed point group K and write g = k + p for the eigenspace
decomposition of θ. We fix a maximal abelian subspace a ⊂ p ∩ q.

The simultaneous eigenspace decomposition of g under ad a leads to
a (possibly reduced) root system Σ ⊂ a∗\{0}. Write areg for a with the
root hyperplanes removed, i.e.:

areg = {X ∈ a | (∀α ∈ Σ) α(X) 6= 0} .

Let M = ZH∩K(a) and WH = NH∩K(a)/M .
Recall the polar decomposition of Y . With y0 = H ∈ Y the base

point of Y it asserts that the mapping

ρ : K/M × a → Y, (kM, X) 7→ k exp(X) · y0

is differentiable, onto and proper. Furthermore, the element X in the
decomposition is unique up to conjugation by WH , and the induced
map

K/M ×WH
areg → Y

is a diffeomorphism onto an open and dense subset of Y .
Let us return now to our subject proper, the vanishing at infinity of

functions in E∞
p . Let us denote functions on Y by lower case roman

letters, and by the corresponding upper case letters their pull backs to
K/M × a, for example F = f ◦ ρ. Then f vanishes at infinity on Y
translates into

(3.1) lim
X→∞

X∈a

sup
k∈K

|F (kM, X)| = 0 .

We recall the formula for the pull back by ρ of the invariant measure
dy on Y . For each α ∈ Σ we denote by gα ⊂ g the corresponding
root space. We note that gα is stable under the involution θτ . Define
pα, resp. qα, as the dimension of the θτ -eigenspace in gα according to
eigenvalues +1,−1. Define a function J on a by

J(X) =

∣

∣

∣

∣

∣

∏

α∈Σ+

[cosh α(X)]qα · [sinh α(X)]pα

∣

∣

∣

∣

∣

.
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With d(kM) the Haar-measure on K/M and dX the Lebesgue-
measure on a one then gets, up to normalization:

ρ∗(dy) = J(X) d(k, X) := J(X) d(kM) dX .

We shall use this formula to relate certain Sobolev norms on Y and
on K/M × a. Fix a basis X1, . . . , Xn for g. For an n-tupel m =
(m1, . . . , mn) ∈ N

n
0 we define elements Xm ∈ U(g) by

Xm := Xm1

1 · . . . · Xmn

n .

These elements form a basis for U(g). We introduce the Lp-Sobolev
norms on Y ,

Sm,Ω(f) :=
∑

|m|≤m

[
∫

Ω

|L(Xm)f(y)|p dy

]1/p

where Ω ⊂ Y , and where |m| := m1 + . . . + mn. Then f ∈ E∞
p if and

only if Sm,Y (f) < ∞ for all m.
Likewise, for V ⊂ a we denote

S∗
m,V (F ) :=

∑

|m|≤m

[
∫

K×V

|L(Zm)F (kM, X)|p J(X) d(k, X)

]1/p

Here Z refers to members of some fixed bases for k and a, acting from
the left on the two variables, and again m is a multiindex.

Observe that for Z ∈ a we have for the action on a,

[L(Z)F ](kM, X) = [L(Zk)f ](k exp(X) · y0)

where Zk := Ad(k)(Z) can be written as a linear combination of the
basis elements in g, with coefficients which are continuous on K. It
follows that there exists a constant Cm > 0 such that for all F = f ◦ ρ,

(3.2) S∗
m,V (F ) ≤ CmSm,Ω(f)

where Ω = ρ(K/M, V ) = K exp(V ) · y0.
Let ǫ > 0 and set

aǫ := {X ∈ a | (∀α ∈ Σ) |α(X)| ≥ ǫ} .

Observe that there exists a constant Cǫ > 0 such that

(3.3) (∀X ∈ aǫ) J(X) ≥ Cǫ .

We come to the main part of the proof. Let f ∈ E∞
p . We shall first

establish that

(3.4) lim
X→∞

X∈aǫ

F (eM, X) = 0 .
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It follows from the Sobolev lemma, applied in local coordinates, that
the following holds for a sufficiently large integer m (depending only
on p and the dimensions of K/M and a). For each compact symmetric
neighborhood V of 0 in a there exists a constant C > 0 such that

(3.5)

|F (eM, 0)|

≤ C
∑

|m|≤m

[
∫

K/M×V

|[L(Zm)F ](kM, X)|p d(k, X)

]1/p

for all F ∈ C∞(K/M × a). We choose V such that aǫ + V ⊂ aǫ/2.
Let δ > 0. Since f ∈ Ep, it follows from (3.2) and the properness

of ρ that there exists a compact set B ⊂ a with complement Bc ⊂ a,
such that

(3.6) S∗
m,Bc(F ) ≤ CmSm,Ω(f) < δ

where Ω = K exp(Bc) · y0.
Let X1 ∈ aǫ ∩ (B + V )c. Then X1 + X ∈ aǫ/2 ∩ Bc for X ∈ V .

Applying (3.5) to the function

F1(kM, X) = F (kM, X1 + X),

and employing (3.3) for the set aǫ/2, we derive

|F (eM, X1)|

≤ C
∑

|m|≤m

[
∫

K/M×V

|[L(Zm)F1](kM, X)|p d(k, X)

]1/p

≤ C ′
∑

|m|≤m

[
∫

K/M×Bc

|[L(Zm)F ](kM, X)|p J(X) d(k, X)

]1/p

= C ′S∗
m,Bc(F ) ≤ C ′δ,

from which (3.4) follows.
In order to conclude the theorem, we need a version of (3.4) which

is uniform for all functions L(q)f , for q ∈ Q ⊂ G a compact subset.
Let δ > 0 be given, and as before let B ⊂ a be such that (3.6) holds.

By the properness of ρ, there exists a compact set B′ ⊂ a such that

QK exp(B) · y0 ⊂ K exp(B′) · y0.

We may assume that B′ is WH-invariant. Then, for each k ∈ K,
X /∈ B′ and q ∈ Q we have that

(3.7) q−1k exp(X) · y0 /∈ K exp(B) · y0,
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since otherwise we would have

k exp(X) · y0 ∈ qK exp(B) · y0 ⊂ K exp(B′) · y0

and hence X ∈ B′.
We proceed as before, with B replaced by B′, and with f , F replaced

by fq = Lqf , Fq = fq ◦ p. We thus obtain for X1 ∈ aǫ ∩ (B′ + V )c,

|Fq(eM, X1)| ≤ CS∗
m,(B′)c(Fq) ≤ CCmSm,Ω′(fq)

where Ω′ = K exp((B′)c) · y0.
Observe that for each X in g the derivative L(X)fq can be written

as a linear combination of derivatives of f by basis elements from g,
with coefficients which are uniformly bounded on Q. We conclude that
Sm,Ω′(fq) is bounded by a constant times Sm,Q−1Ω′(f), with a uniform
constant for q ∈ Q. By (3.7) and (3.6) we conclude that the latter
Sobolev norm is bounded from the above by δ.

We derive the desired uniformity of the limit (3.4) for q ∈ Q,

(3.8) lim
X→∞

X∈aǫ

sup
q∈Q

|Fq(eM, X)| = 0 .

Finally we choose an appropriate set Q. Let ǫ > 0 be arbitrary.
There exists X1, . . . , XN ∈ a such that

(3.9) a =
N
⋃

j=1

(Xj + aǫ) .

Set aj = exp(Xj) ∈ A and define a compact subset of G by

Q :=
N
⋃

j=1

Kaj .

Then, for every X ∈ a we have X − Xj ∈ aǫ for some j. Hence with
q = k exp(Xj)

lim
X→∞

F (kM, X) = lim
X→∞

Fq(eM, X − Xj) = 0,

as was to be shown. �

Remark. Let f ∈ L2(Y ) be a K-finite function which is also finite for
the center of U(g). Then it follows from [4] that f vanishes at infinity.
The present result is more general, since such a function necessarily
belongs to E∞

2 .



8 BERNHARD KRÖTZ AND HENRIK SCHLICHTKRULL

References

[1] E. van den Ban, The principal series for a reductive symmetric space, II, Jour.
Funct. Anal. 109 (1992), 331–441.

[2] J. Dixmier and P. Malliavin, Factorisations de fonctions et de vecteurs
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